Industrie 4.0_Glossary

Everyone is talking about Industrie 4.0, digitization, big data and cloud technology just to name a few. Here you can find definitions and descriptions of most terms regarding the fourth industrial revolution.

亚博vip群1 Industrie 4.0 expert Christoph Groll

The disruptive force of digitization is only now unfolding. As a technology pioneer, 亚博vip群1 is setting a benchmark in the digitization of its own products, as well as in the data-driven optimization of entire production lines. Experience – both internally at 亚博vip群1 and externally with our customers – shows the enormous potential of this approach, providing genuine added value across the entire production and process chain.

Christoph Groll, Head of IIoT Solutions, 亚博vip群1 Aktiengesellschaft

Administration Shell

_All data in a single shell. The administration shell is the virtual image of a hardware or software component in a production process, containing all the specific production data. This data opens the way to entirely new possibilities and added value in networked production. One decisive benefit is that all information – from CAD data and maintenance information through to configuration details – is located in one place without media discontinuity. Data and functions are available on the component itself, in the company network and/or in the cloud. This collection of information results in an all-encompassing knowledge which, once stored, can be made available for any user and any application.

App

_Expertise from the cloud. Apps for industrial scenarios – programs for defined, specific applications – are the answer that experienced specialists with extensive process and industry know-how offer up for customers’ challenges. Intelligent mobile apps make modern companies Industrie 4.0-capable. 亚博vip群1 offers apps for a wide range of challenges across the entire value chain – in manufacturing, for example, their functionalities encompass Maintenance Services through Asset Management to Demand Planning.

App Store

_New capabilities on demand. Already equipped for the future: for generations, 亚博vip群1 robot controllers have featured a modular and scalable configuration on the basis of mainstream technologies. Among other things, 亚博vip群1 has thus created the foundation for making smart tools available via app stores and marketplaces. Intelligent digital forms or complete applications, such as those familiar today from well-known app stores for smartphones, tablets or computers, and which endow robots with new capabilities and functions on demand at the click of a mouse. For example, programs that only require entry of the desired parameters. With regard to Industrie 4.0, the immediate availability of new production capabilities will open up a whole new dimension of versatility for robots.

Artificial Intelligence

_Machines as intelligent partners. Artificial Intelligence (AI) is the step required for implementing the fourth stage of the robotic revolutions. It presupposes that machines, information systems and robots are capable of becoming still much more intelligent and responsive. In the fields of service robotics and home assisted living, these intelligent machines with their cognitive and sensitive capabilities will become increasingly important as helpers for humans. Today, these systems are still fully dependent on programming by humans. As the degree of autonomy of the systems increases, however, the issue of responsible management of artificial intelligence will become ever more pressing.

Batch Size 1

_Unique, one-off products for everyone. Industrie 4.0 is creating the basis for implementing the highest levels of customization – all the way down to batch size 1 – within industrial manufacturing. This means high-quality, single-piece production at the price of current uniform, mass-produced goods. The networking of all systems involved in production, and their extreme flexibility, will make the fulfillment of individual customer requirements a matter of routine in the smart factory. While the desire for customized products is already a megatrend today, it will develop to become one of the decisive competitive factors in the near future. This trend not only offers new market opportunities for products, but also gives traditional industrial nations the option to return previously outsourced production capacity to locations in high-wage countries.

Big Data

_Data is the new oil. The term “Big Data” refers to quantities of data that are too large or too complex, that change too quickly or are too weakly structured for them to be evaluated with manual and conventional methods of data processing. In this context, experts talk about an inconceivably large data volume of currently more than eight zettabytes – with an increasing tendency. A substantial proportion of this already comes from the Internet of Things (IoT) and from the ever more numerous sensors in machines and vehicles. Data is increasingly being generated in real time. In connection with Industrie 4.0, however, it is the ability to evaluate and process this flood of data that is of paramount interest. That is how Big Data becomes Smart Data. The challenge is therefore not only for IT systems to be able to handle heterogeneous data correctly but also for them to analyze the data in order to create a reliable basis for business decisions – preferably in real time. Only in this way can processes be controlled intelligently and adapted to changing parameters. Taking the metaphor further, Big Data is thus the new oil of the 21st century.

Cloud Robotics

_Shared intelligence. Nowadays smartphones, tablets and computers utilize data and processing power from the cloud as a matter of course. In the context of Industrie 4.0, robots too will be able to access decentralized data in networks or in the cloud, thereby significantly boosting their performance and flexibility. The robot itself will only require a small chip to control functionality, motion and mobility. For the task at hand, specific services will be retrieved from the cloud or individual robots networked on an ad hoc basis to form temporary production teams. In this way, specialists will become universalists that can be used for a wide range of different manufacturing processes. Cloud robotics enables the implementation of a broad spectrum of different industry-specific applications via “Robotics as a Service”. Another effect of the cloud: robots learn from one another. If one robot encounters an obstacle, for example, it posts this information to the connected systems, which can use it to respond intelligently to the obstacle.

Collaborative Robots

_Hand in hand. Collaborative robots – sometimes also known as “cobots” for short – are robots that are capable of human-robot collaboration (HRC) and work hand-in-hand with their human colleagues. As collaborative robots operate without physical safeguards, they have to permanently calculate the risk of colliding with humans, constantly checking this via the robot controller. The strict safety requirements have been redefined in the revised EN ISO 10218 standard, parts 1 and 2, and in the ISO/TS 15066 specification initially drafted in 2010. Besides the robot itself, the standard also covers the adapted end-of-arm tooling with which the robot performs its tasks, and the objects moved with it. With the LBR iiwa, 亚博vip群1 has made the world’s first series-produced, collaborative lightweight robot for industrial applications ready for the market, thereby proving that the visions of Industrie 4.0 can be turned into reality.

Committees

_Strong alliances with 亚博vip群1. As a leading supplier of intelligent automation solutions, 亚博vip群1 is directly involved in Industrie 4.0 and sees itself as responsible for forming strong alliances with the goal of actively shaping the factory of the future together with other key players. That is why 亚博vip群1 is a member of all major national and international advocacy groups and committees, such as the Industrie 4.0 Platform coordinated by the German Federal Ministry for Economic Affairs and Energy, the Industrial Internet Consortium IIC, the OPC Foundation, the German industry association VDMA and the associations BITKOM and VDE. As a trailblazer for Industrie 4.0, 亚博vip群1 is a sought-after interlocutor for decision-makers in the worlds of politics, research, and business.

CPS (Cyper- Physical System)

_Physical world meets virtual world. A cyber-physical system (CPS) is a “thing” in the Internet of Things (IoT). It is a combination of mechanical and electronic software components that communicate via a data infrastructure such as the Internet, react flexibly to external influences and exchange data with information systems and other CPSs. In future manufacturing facilities, cyber-physical systems will communicate with intelligent, networked industrial production and logistics units – also known as cyber-physical production systems (CPPS). The CPSs exchange information, trigger actions in production and reciprocally control themselves autonomously. This enables industrial processes in manufacturing, engineering, use of materials, supply chain management and life cycle management to be fundamentally restructured and optimized.

Data Ownership

_Who owns the data? The data must belong to their originator. A principle that is regrettably contested in the cloud. The open exchange of data and information, however, is a vital ingredient of Industrie 4.0. Information that was generated in the company prior to storage in the cloud is generally subject to local copyright laws. But if the data are created in the cloud, things become somewhat more ambiguous. Cloud providers have a different approach to dealing with user data in terms of access rights and at times create confusion as to ownership. It is therefore important to ensure transparency in the use of cloud services and to select secure encryption for all data sent to the cloud. This gives users control over their data and thus some form of ownership, regardless of legal issues. Particularly with a view to the horizontal networking of various companies within a production process, the question of data sovereignty is of central importance. With cloud solutions meeting the highest data security standards, 亚博vip群1 offers unique platforms on the basis of which customers can exchange their own data with others or enrich them with new intelligence and additional information.

Decentralized Intelligence

_Intelligence evolves in the swarm. Decentralized intelligence will play an important role in Industrie 4.0: all parties can communicate with one another – workpiece with machine, machine with machine or with higher-level processes. No central “brain” will control and monitor the things, but rather autonomous production units will carry out this function for both heterogeneous and homogeneous teams. Decentrality makes for greater flexibility and quicker decisions. Intelligence evolves in the swarm or through joint networking with the cloud.

Demographic Change

_Society is getting ever older. In principle, the term “demographic change” is a neutral reference to any alteration in the age structure of a society. At present, however, it is being widely used as a synonym for increasing overaging in the industrial nations. A trend that is diametrically opposed to the rapid growth of the global population. By the year 2020, more than half of the German population will already be over 50 years of age. An ever smaller number of people in employment will have to generate the entire productive output for the social systems. This challenge can only be met if the remaining workers become considerably more productive than all generations before them. At the same time, opportunities must be created for older, experienced employees to participate in the world of work for longer. In order to make new working environments both highly productive and ergonomically beneficial for the labor force, 亚博vip群1 is developing central key technologies for Industrie 4.0: collaborative robots, mobile assistance systems, autonomously controlled vehicles and smart, digitized automation solutions that support humans in the work setting, easing the workload in a variety of ways.

Development Community

_Innovating together. Intelligent solutions benefit from the expertise of many creative professionals. 亚博vip群1 offers interested developers access to a powerful platform that serves as a central point of contact for exchanging a vast variety of information. This community assists its members with expertise, support and resources. This platform by developers for developers, a “KDN – 亚博vip群1 Developer Network” so to speak, facilitates the very exchange of information that makes the added value of team creativity fruitful. The bundled expertise further strengthens the potential of the 亚博vip群1 ecosystem. As an example, the platform makes it easier for start-ups to generate business processes and develop new business models.

Digital Business Transformation

_Creating the business of the future. Digitization is upending a large number of existing business models. Networked automation, intelligent processes, shared expertise across companies and industries, and a holistic view of the value chain with involvement of the ustomer – these are the characteristics of digitized business models. They open up completely new business opportunities and options, and offer competitive advantages – and only they make it possible to fulfill customer requirements optimally. There is no economically successful future without the digitization of business models. With its own Consulting center of excellence, 亚博vip群1 is assisting companies along the way to a digital future.

Digital Customer Journey

_Journey through the digital business landscape. In general terms, the “Customer Journey” represents the sequence of (digital) contacts that a customer may encounter when dealing with another company. Depending upon the issue, the first point of contact and subsequent contacts may vary. If a purchase is intended, for example, the customer’s journey may start off with the links in a search engine request or a rating portal, followed by a shop visit. The app store and support website are other possible starting points that are implemented in industry. For business-to-business processes, the initial contact may take place through the business cloud instead of a website, for instance by visiting a developer platform. 亚博vip群1 serves its customers as a hub for organizing their digital journey.

Digital Shadow

_Virtual image of real things. The digital shadow is a digital image of a real object. This data contains both the current status and the desired status of the object, the possible ways and processes for achieving this desired status, and the history of what the object has already gone through. Only through the combination of a digital shadow and a physical object does a smart thing result. Every physical product can be manufactured more efficiently and with higher quality in the digitized production facility if a digital shadow has been created for it and it bears its own specific DNA.

Digital Value Chain

_Transcending all boundaries. The digital supply chain merges the major business processes of all parties involved – from the suppliers to the manufacturer and the end customer. The potential of a digitized value chain lies primarily in the acceleration of the production and logistics processes, the reduction of effort for data acquisition and the optimization of data security and consistency. With integrated networking, the digital value chain is able to overcome current media discontinuity. One example from the field of procurement: where a steel-processing company previously had to activate a complicated process via different media for purchasing and replenishment, in the future purchasing will be automated on the basis of predefined parameters. Companies today are already making use of digital value chains to optimize individual production islands and processes within their organization. In the factory of tomorrow, the digital supply chain will also encompass global procedures across company boundaries, controlling them largely autonomously. As the most flexible machine ever conceived by man, the robot plays a central role in the digital supply chain. In its function as the core component of intelligent automation solutions, it increases the entrepreneurial freedom of action, creates competitive advantages, speeds up production processes and assures quality in the long term. Integration into the 亚博vip群1 Connect platform accelerates the conversion to a digitized value chain.

Digitization

_Potential of the digital transformation. Converting real products and analog sequences into digital data and processes is referred to as digitization. In Industrie 4.0, people, machines and industrial processes are networked on the basis of cyber-physical systems incorporating state-of-the-art information and communications technology. In this context, the intelligent exchange and interpretation of data determine the entire life cycle of a product: from the idea to development, manufacturing, use and maintenance through to recycling. Production and logistics processes will be globally networked beyond the factory gates in the future for the purpose of optimizing the flow of materials, detecting non-conforming parameters at an early stage and enabling a highly flexible reaction to changing customer requirements and market conditions.

Edge Cloud Gateway

_The Cable Modem of the shop floor. Much like a DSL Router connects peripherals to the Internet, an edge cloud gateway connects the various devices at the production level to a network or a cloud environment via EtherNet or wireless / mobile connection, so that data can be collected, exchanged and processed. Features such as secure communication and quality of service are implemented.

Flexibility

_Flexibility in all dimensions. Flexibility is the ability to react quickly to changing influences. In the smart factory, utmost flexibility results primarily from the combination of IT technologies, such as the Cloud and Big Data, with intelligent, generic production units incorporating robots and autonomously controlled mobile units. The factory of the future will not have any predefined routes or rigid processes. Mobile units will equip robots “on the fly” with other tools, enabling them quickly to carry out new tasks or process other workpieces. The smart factory is therefore able to manufacture different products or product versions without any significant retooling times. It thus completely redefines the concept of flexibility in production.

Framework

_The programming kit. Generally speaking, a framework is a defined structure for the programming of software or dynamic websites. So-called “pre-programs” allow developers to save time: frequently recurring program steps are already pre-programmed and can simply be called up when needed. Thus, it is no longer necessary to repeat certain functions and computer tasks. Frameworks provide valuable support particularly for quickly programming apps. In robotics, a framework provides software components for industrial use. This includes algorithms, libraries and methodological know-how. Standardized interfaces and appropriate middleware make it easy to replace hardware and software components. This simplifies and speeds up application development in automation.

Home Assisted Living

_Living independently – even in later life. Our society is becoming ever older: in 2035, one in every three Germans will be over 60 years of age. Everybody wants to stay autonomous and active for as long as possible when old, however. Home assisted living enables the elderly to continue an independent life within their own four walls. Besides service robots, which take care of household activities, and smart home applications, services in the medical and nursing sectors will be a part of daily life in the future. With the aid of intelligent robots, rehabilitation treatment, for example, will be possible at home. Mobility assistants will help people to remain agile into old age, improving the quality of millions of lives.

Horizontal Integration

_Dynamic company networks. Exact coordination is not only indispensable for internal process optimization within a company, but also between all companies involved in the value chain. This horizontal integration – networking between different enterprises and their assets – is the starting point for the flexible design of their shared value creation processes. In the era of Industrie 4.0, companies will form dynamic networks in the future, linking order-specific and product-specific capacities in virtual production communities. Current data from the production-relevant processes will enable fast and precise reactions – for instance to planning changes or unexpected events occurring inside or outside an individual company. Production and logistics processes adapt to the real situation in real time, boosting the long-term flexibility and efficiency of the companies acting within an integrated concept. Process analyses to increase productivity involve many different components – and thus also their manufacturers. See also Manufacturing Ecosystem.

Individualized Production

_Meeting every customer requirement. Individualized, or customized, production refers to the concept of an intelligent, highly automated production system that allows high variance and dynamism in the product range with production costs at the level of mass production. The goal is to resolve the conflict between the customer’s desire for individualization and the process efficiency of production in an industrial setting. A batch size of 1 is the highest level of customized production. Besides proprietary solutions in the automotive sector, Industrie 4.0 with its universally networked production environments represents the world’s most advanced approach for implementing customized production.

Industrie 4.0

_Production meets digitization. Industrie 4.0, Smart Production or Internet of Things (IoT) – even if the names and terms used vary from one country to another, they all share the same goal. What is called for here is nothing less than a long-term transformation of our global perception of industrial production through the seamless connection of the digital and real worlds. 亚博vip群1 is at the interface between these two worlds and is playing a decisive role in advancing this transformation as a thought leader and trailblazer for Industrie 4.0. It was back in the 1990s that 亚博vip群1 as a first mover recognized the potential to be gained by combining the world of IT with conventional automation technologies. The company was also the world’s first robot manufacturer to develop open, interoperable and flexible systems on the basis of standardized mainstream technologies and to make them ready for the market. In collaboration with experts from diverse sectors, 亚博vip群1 is now already implementing highly flexible, digitized manufacturing processes that will open up new opportunities in a competitive environment and lastingly change the way we work and produce. 亚博vip群1 supports companies with the digitization of production across industries – from small and medium-sized companies to large OEMs. This provides a platform for anyone who is ready to step into the world of Industrie 4.0.

Internet of Automation (IoA)/ Internet of Robotics (IoR)

_Basis for efficient production. Both the Internet of Automation (IoA) and the Internet of Robotics (IoR) make use of defined open communications and data standards to network interoperable production processes even across company boundaries. In the IoR for example, 亚博vip群1 robots, the 亚博vip群1 App Store, middleware and monitoring tools are networked to form a highly efficient production environment in which analog and digital devices can easily communicate with one another. In the near future, it will be possible for all the cyberphysical elements involved in the automated manufacturing process to be networked in the IoA and to communicate with the IoR. Extensive standardization of protocols and technologies is required for this Internet-based infrastructure. See also Committees.

Internet of Things (IoT)

_Everything communicates with everything else. Like Industrie 4.0, the Internet of Things (IoT) presupposes a network of physical objects – devices, vehicles, buildings and other items – which are fitted with electronic components, software and sensors, all of them being linked interoperably via the Internet. Unlike Industrie 4.0, the IoT rather non-selectively refers to all things that could be connected to the cloud. The IoT thus also encompasses the private domain, including, for instance, the already well-known “smart home” applications. Strictly speaking, the smart factories of Industrie 4.0 along with all their production and logistics processes are a part of the IoT. Experts forecast that the IoT will comprise 50 billion objects by the year 2020.

Interoperability

_Everything works together. Interoperability (IOP) describes the ability of an object, device or machine to communicate with other things in the network. It must be able to do so regardless of whether the devices are from the same or different manufacturers. Interoperability is a fundamental precondition for creating a layer that enables cyber-physical systems to be interconnected such that interactions are possible without the participants knowing which technologies the implemented devices are based on. It is also the basis for the capability of the things in the network to communicate without any restrictions and to act intelligently as a swarm. See also Committees.

KMP omniMove

_Strong on the move. Wherever size, load-bearing capacity and precision are required, the KMP omniMove heavy-duty mobile platform is in its element. Individually or as part of a fleet, the KMP omniMove can effortlessly move beneath, and lift, workpieces weighing more than 90 tonnes and move in any desired direction with millimeter precision from a standing start, thanks to the multidirectional omniWheels. The KMP omniMove can move autonomously, under guidance along a programmed path or conventionally under manual control.

KMR iiwa

_New horizons. Shorter response times and greater flexibility going beyond full automation: these are the requirements of markets that are changing at an ever faster pace. The industrial manufacturing of the future will require modular, versatile and, above all, mobile production and manufacturing concepts. That is why the KMR iiwa unites the sensitive and compliant LBR iiwa lightweight robot with 亚博vip群1’s mobile platform technology to form a new, intelligent and fully mobile combination that can work in the vicinity of humans. Just like humans, the 亚博vip群1 Mobile Robots (KMR) can also track moving workpieces, move around them freely and link solitary production islands to form new production units.

KMR QUANTEC

_Large-dimension e-mobility. Anyone thinking big and looking for flexible mobility will find the perfect powerful partner in the KMR QUANTEC. The combination of 亚博vip群1 six-axis robots, mobile platforms, high-performance energy storage units and industrialgrade components creates a mobile solution for virtually any scenario. Despite its strength, the KMR QUANTEC is characterized by outstanding precision and maximum electromobility. Its small power plant supplies it with electricity for a full eight-hour shift. The position and number of robots installed are variable, as too are the size and payload capacity of the platform. Grippers, power-hungry tools and special equipment can also be transported on the KMR QUANTEC and continuously supplied with power.

亚博vip群1 flexFELLOW

_Mobility on demand. The 亚博vip群1 flexFELLOW automation unit can be moved manually and allows ad hoc localized variation of the degree of automation in production. Without the need to alter the production layout, for example, the 亚博vip群1 flexFELLOW is able to open the safety doors at machines, which it can then load and unload independently. It can also assist the operator in performing work steps in ergonomically unfavorable situations. In alternating operation, humans and robots can ideally complement one another. The combinability of manual and automatic tasks means that production can be optimally adapted to the specific requirements.

亚博vip群1 LBR iiwa

_Robotic colleague. 亚博vip群1 is starting a new chapter in the history of industrial robotics with the lightweight robot LBR iiwa (intelligent industrial work assistant). As the first series-produced sensitive robot for human-robot collaboration (HRC), the LBR iiwa is tapping new applications that were previously closed to automation. Thanks to its sensory capabilities, it can intuitively learn new tasks on an ad hoc basis, simply through being guided by its human partner. The machine becomes a “robotic colleague”. It works hand in hand with the operator, thereby enabling him to work more efficiently, more ergonomically, more precisely and with greater concentration. As a robot that can genuinely be deployed universally, it is defining new standards on the road to the fourth industrial revolution.

Logistics

_Now. Everything. Always. Customized products and same-day delivery – customers have a growing expectation that everything will be available in all places, at all times. This ubiquity places the utmost demands on the logistics and process chains and is increasingly embracing the stationary retail sector and the structure of merchandise flows. The boundaries between individual delivery channels are successively vanishing and modern distribution centers are often being set up directly in metropolitan areas thanks to the reduced space requirements. Changes that can only be addressed through highly transparent, digitized networking of production and logistics. In this context, 亚博vip群1 sees itself as a solution provider translating the individual requirements of the market participants into flexible, networked and software-supported logistics concepts.

M2M Communication Protocol

_The universal communicator. Machine-to-machine communication, or M2M, is the automatic exchange of information between machines. These may be vastly different end devices, from production machines through vending machines to vehicles or household appliances. A standardized set of rules is needed for M2M communication to work – in modern terms: a protocol. Such a standardized software interface enables universal communication. The most promising protocol at this time is the Open Platform Communications Unified Architecture (OPC UA).

Machine Learning

_Knowledge through experience. Intelligent machines garner their knowledge through experience. In the case of networked machines, it is irrelevant whether the experience is their own or originates from swarm intelligence. An artificial system always learns by comparing the desired objective and any anomalies that occur. It can recognize correlations, patterns and general rules, draw conclusions from them and modify its future behavior, this synthetic process being referred to as machine learning. Especially in unstructured environments and with highly flexible processes like Industrie 4.0, machine learning in a swarm or in the cloud is an effective method of adapting production processes intelligently and autonomously to the individual framework practically in real time.

Manufacturing as a Service (MaaS)/ Robotics as a Service (RaaS)

_Access rather than ownership. Digitization has substantially changed the approach to physical possession. This is increasingly being replaced by temporary access to goods or services. The best example: music streaming. What has already become an everyday situation in many consumer segments will also revolutionize the industrial environment over the next few years. As the name implies, manufacturing processes are provided as a service when offering “Manufacturing as a Service”: the machine does not change ownership, and only the service of the machine is paid for (for example in the form of a cost-per-uptime model). What applies to complete production systems will, in the future, also hold true for individual elements within a manufacturing facility – for robots, for example. On the basis of a “pay-per-use” model, it will not be the physical object itself that is purchased in conjunction with “Robotics as a Service”, but rather its performance, such as weld spots in vehicle body production, for instance. The smart factory of the future integrates these services seamlessly into its production processes and thus has the capability of reacting to varying capacity requirements and goods flows exceedingly flexibly and efficiently while conserving resources at the same time. Ultimately, these business models uproot traditional ideas of what a value chain may look like: the principle of shar